

Applications:

- Intermediate temperature brazing alloy suitable for copper, bronze and brass joints, capable of withstanding high pressures and vibrations.
- Used for manufacturing and repairing cooling coils, capacitors, vaporizers, heat exchangers, gas pipes, instrumentation controls, refrigeration units, electrical
- contacts, primus nozzles, etc. It has good corrosion resistance and better electrical conductivity.
- This alloy should not to be used on steel as it can produce brittle joints.

Characteristics:

Melting Range	Solidus 643°C / Liquidus 813°C
Working Temperature	718 - 816°C
Heating Method	Torch, furnace, induction
Tensile Strength	26 kg/mm² (37,000 psi)
Elongation in 2"	8-10%
Chemical Composition	Cu 86.8%, P 7.2%, Ag 6%

Procedure:

- 1. Clean brazing area removing rust or grease. Use torch with a natural flame.
- 2. Flux is not needed to join copper to copper. Heat the copper properly until it is a dark red, then add a drop of alloy making it flow.
- Continue applying the alloy by heating the joint area until it flows completely throughout the joint by capillary action.
- For joining copper to bronze or brass, cover the area well with flux and heat with the torch until the flux liquefies.
- 5. Apply the alloy. It is very important that the joint is properly closed to ensure leak-free joints, particularly in overlapping joints of copper pipes.
- 6. Remove flux residue once the brazed joint or part has

Available forms:

Round rods (Ø)	1/16" (1.6mm), 3/32"(2.4mm), 1/8" (3.2mm)
Foil	0.05" x 1/8" (1.3x3.2mm)
Lengths	18" (457mm), 20" (508mm) y 500mm

