TB-85

Description:

 Nickel brass brazing alloy resistant against frictional wear

Applications:

- Used for brazing steels, cast iron, copper, bronze, brass and nickel.
- Ideal to rebuild broken gear teeth, worn bearings, cams, valve seats, pistons, chain links, shafts, and to rebuild pump impellers.
- Also used to weld galvanized steel parts, reducing the

Characteristics:

zinc layer. Used to join tungsten carbide parts to high-
strength steel bases.

• This work-hardening alloy is very resistant and is therefore ideal as a surface coating that requires great resistance against frictional wear. It is also highly resistant to corrosion

Melting Range	Solidus 921°C / Liquidus 935°C
Working Temperature	935 - 982°C
Heating Method	Torch, furnace, induction
Tensile Strength	60 kg/mm² (85,300 psi)
Elongation in 2"	25%
Chemical Composition	Cu 48%, Zn 41.9%, Ni 10%, Si 0.1%

Procedure:

- 1. Clean brazing area. Bevel sections thicker than 4.00 mm.
- 2. Use a neutral flame and hold the torch at a low angle to the base metal. Heat until it becomes a dull red color.
- 3. Rub a little flux at the start of the brazing area, or use flux if bare rods are used. When the flux is flowing freely deposit a drop of alloy and pass the flame over it until it melts and joins easily.
- 4. Add the alloy until the desired shape and size are obtained.
- 5. Layer after layer can be deposited without removing the flux or previously cleaning the deposit.

Available forms:

Round rods (Ø)	1/16″ (1.6 mm), 3/32″ (2.4 mm), 1/8″ (3.2 mm)
Lengths	500 mm or 36″ (914 mm)

